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ABSTRACT

The problem of finding a function which, in addition to being zero

outside a specified range in x-space, has its spectral power well con-

fined to a certain range in k-space is solved numerically. Properties

of the solutions are also discussed.
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It is common practice to filter a set of data before performing a

spectral analysis. This is done either to remove unwanted noise or in

hope of enhancing a weak signal thought to be present in the data. As

both the filtering and spectral analysis are almost always performed on

a digital computer, the filter "window" is effectively zero outside some

range due to the finite precision of computer arithmetic. Therefore we

will consider a filtering function g(x) which is defined to be zero

except for x e[-L,L]. We have chosen to consider a symmetric range to

simplify the analysis; however, we will see that the results are easily

generalized. It is well known that if a function is zero outside [-L,L]

there is no finite K for which its Fourier transform is zero outside

[-K,K]. Nonetheless, the aim of the filtering usually is to remove or

retain some range of frequencies. Hence we want to consider a filter

which is zero outside [-L,L] but also has its Fourier transform concen-

trated in the range [-K,K]. Before going further we must choose some

measure of how well a function's Fourier transform is concentrated in

[-K,K]. The measure we will use is the fraction of the spectral power

contained in [-K,K]. For a given K and L we may then ask if there

is a function which is optimal in the sense of being zero outside [-L,L]

and having the largest possible fraction of its spectral power in [-K,K].

We choose the following definition of the Fourier transform:

•1 ikx
g(k) f (2e)-  e-ik g(x)dx (1)

Then from the Fourier theorem we also know that
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g(x) = (2)-2 f ikx e g(k)dk (2)

Then the quantity we wish to maximize is

K K

fK 19(k) 2dk 
K [(k) 2dk

K f(3)

f (k)l dk f g(x)j 2dx

We will restrict our attention to real valued filter windows. The problem

as presently posed is indeterminate without some normalization constraint,

so we make the obvious choice

S2(x)dx = 1 . (4)

We see now that our choice for a measure of compactness in k-space makes

generalizing the range in both k- and x- space very easy. Translating

the range in x-space AL say to [-L+ AL, L+ AL] will multiply the

Fourier transform by e ikAL leaving the spectral power unchanged.

Similarly multiplying the filter by e-ikx will translate the Fourier

transform in k-space. Maximizing (3) is equivalent to finding the

eigenfunction associated with the largest eigenvalue of the integral

equation

Sf(x) sin(x- x) f(x')dx' for Ixi < KL (3)
fKL x- x
-KL

where f(Kx) = g(x) and C is the fraction of the spectral power of g

contained in [-K,K]. This result is derived in appendix I. In appendix II
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it is shown that if f satisfies (5) then its Fourier transform satisfies

S~((KL)k) sin(k- k') T((KL)k') dk' . (6)

-KL

f cannot be its own Fourier transform since f(x) is defined to be zero

outside [-KL,KL] while (6) is valid for all k. Nevertheless if the

largest eigenvalue of (5) is non-degenerate, f and its Fourier transform

are simply related.

We now make use of the fact that the kernel of (5) has a diagonal

expansion in spherical Bessel functions (Jackson 1962):

sin(x -/x') (2n+1)j(x)jn(x ') . (7)
x- XI n=O

Now if we define Pn(X) = (2n+ 1) 2 n(x) and expand the eigenfunctions

in these (non-orthogonal) basis functions we can rewrite (5) as

do 1 KL co CO

a f(x)=CX anp(x) - f q(x)yn(x') 1 amcpm(x')dx' . (8)

n=0 -KL n=0 m=0

If we define the inner product (f,g) = f(x)g(x)dx we may use the

-KL

independence of the spherical Bessel functions to write

an = n )am (9)
m=0

Since our range of integration is symmetric, the inner products (Pn'Pm)

are zero unless m+ n is even. Thus the problem separates naturally

into finding the largest eigenvalue and associated eigenfunction for
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odd and even functions separately. Therefore the remarks at the end of

appendix II apply to all of the eigenfunctions of this kernel. We will

leave implicit the fact that there are two separate problems to be

solved.

Now we may attempt to approximate the eigenvalues and eigenfunctions

by truncating the spherical Bessel function expansion at some 
point.

Thus we need a reasonably efficient method of calculating the spherical

Bessel functions and the inner products of (9). The spherical Bessel

functions are easily calculated by "backwards recursion" (see, for

example, Abramowitz and Stegun 1964a). This method is particularly

suited to this case since the value of several spherical Bessel functions

will be needed for the same argument. The inner product can be relatively

easily calculated from a relation given by Abramowitz and Stegun (1964b)

from which one can show

Sjn(t)Jm(t)dt - n+m+ 1 in(x)jm(x) + 2 (X)k mk (10)

k=1

Therefore we need only evaluate the spherical Bessel functions at the

end points of the interval of integration to find the required inner

products. For this calculation standard library subroutines were used

to evaluate the largest eigenvalue and associated eigenvector an of (9)

truncated at N (for details of the algorithm used see Wilkinson and

Reinsch 1971a,b,c). Then similar results were calculated for (9)

truncated at N+ 1. When the difference between succesive approximations

to the eigenvalue and the eigenfunction evaluated at zero and the end

point of the range was sufficiently small, the approximations were
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accepted. The fraction of spectral power in [-K,K] is plotted as a

function of KL for both the even and odd cases in figure 1. The best

eigenfunctions for several values of KL are plotted in figure 2 with

the axes scaled so that the functions are non-zero on the same range

and have the same value at zero.

The solution of this problem may also be of interest to workers

writing computer codes that use a k-space representation truncated to a

finite number of harmonics to solve a differential equation in x-space

(see, for example, Buneman 1974). In this application a function in x-space

is represented by a finite range in k-space (actually by a finite number

of harmonics) but it is desired to restrict the function to a suitable

range in x-space. Thus we have found a k-space form factor that is in

some sense optimal for this problem. It is also possible that the solution

to the similar problem in higher dimensions may be of interest. The

diagonal kernels for the two and three dimensional cases are derived in

appendix III. The expansion of the eigenfunction in (8) also leads to an

expansion of the eigenfunction in Legendre polynomials as shown in

appendix IV.
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APPENDIX I

We wish to maximize

K

fKI  (k) 2dk

2- K f g(k) dkI.)

g2(x)dx -K

under the constraint (x) dx = 1. Now we can rewrite (I.1) using

the Fourier theorem and the requirement that g be real and zero

outside [-L,L]

1 = fK 11 g(x)g(x') e e dx dx' dk (1.2)

Interchanging the order of integration and performing the integral over

k yields

1 f L sin K(x-x') g(x)g(x')dx dx' (1.3)

X- X

We want to maximize 6 under the constraint g(x)dx 1. Therefore

we introduce a Lagrange multiplier and take the variation

6 + Y L g2(x)dx)

-L

( 2L (x)dx 1L sin K(x-x') g(x')dx' - yg(x)l) (1.4)
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For an extremal an arbitrary variation must be zero so we may set the

expression in curly brackets equal to 0.

SL sin K(x- x') g(x')dx' y g(x) for Ix < L (.
S x - x

multiplying both sides by g(x) and integrating identifies y as Cz

and setting f(kx) = g(x) results in equation 5.
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APPENDIX II

We will demonstrate the validity of equation (6). First we define

a function H(z) and write down the integral equation for its Fourier

transform

(k) " sin(k- k') H(k')dk' (II.1)

-KL

Now we take the inverse Fourier transform of both sides which gives

a H(z) = (21) -2 e'ihz (k)dk

) co KL _ _ k
(2i)- sin(k- k') H(k')dk' eikz dk (11.2)

) k- k'

Interchanging the orders of integration on the right hand side and

performing the integral over k yields

SH(z) = (z+1) - (z-1) (k') eik'z dk' (11.3)

-KL

where a(z) is the Heaviside step function. Now we replace H(k') by

its definition and interchange orders of integration obtaining

a H(z) = (z+ ) - (z-1) H(z')dz' KL ek'(z- z)dk' .(II.4)

- -KL

Performing the integration over k' and noting that any function

satisfying (II.4) will be zero outside [-1,1] we may write
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i H(z) sin KL(z- z') H(z')dz' (II.5)
I z-z'

x
Thus letting z - we see that H satisfies the same integral

KL

equation as f(x) so that f(k) satisfies equation (6). We can say

more in the case that the eigenfunction is either even or odd. Since

the square integrals of a function and its Fourier transform are equal

we can in these cases write

f(k) = )e fext (KL)k) (II.6)

where fext is the analytic continuation of the eigenfunction and

= O or n for even eigenfunctions, while 8 = ri/2 for odd eigen-

functions.
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APPENDIX III

In this appendix we briefly outline the method of solution for the

two- and three-dimensional analogs of the problem treated in the text.

The problem to be solved in two (three) dimensions is the following: to

select from the set of functions which vanish outside a circle (sphere)

of radius L that member which has the largest fraction of its spectral

power contained in a circle (sphere) of radius K in k-space. From

the symmetry of the problem we assume that the solution is cylindrically

(spherically) symmetric, i.e. a function of the radius only. The two

cases follow.

A. Two Dimensions

For a function f(r) vanishing for r > L, the two dimensional

Fourier transform is a function of the magnitude of k only and is

defined as

(k) = rdr d eikr cosf(r) = rdr JO(kr)f(r), (III.1)

where Jo(x) is the ordinary Bessel function of the first kind. The

inverse transform is given by

f(r) = kdk JO(kr)f(k) . (III.2)

From (III.1) and (111.2) we see that

Sr2 (r)dr = T(k)dk E N

0
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where r(r) = \rr f(r) and F(k) = k ~f(k). We wish to find f (or F)

such that the quantity

6 dk 2(k) (111.3)

is maximized. As in the main part of the text, we set N = 1 as our

normalization constraint. From (III.1), (111.3) then becomes

a = dr drl (r)H(r,r')Z(r') (III.4)

where

H(rr') = r 7 kdk J 0 (kr)J 0 (kr) (III.5)

0

-K 2 rr 2 [rJ(Kr)JO(Kr') - r'J(Kr')JO(Kr)] (111.6)
r2 - r

To maximize a subject to the normalization constraint, we proceed as

in appendix I to find that r(r) must satisfy the homogeneous integral

equation

L

CT(r) =So H(rr')r(r')dr' . (111.7)

The maximum value of C is then the largest eigenvalue of (11.7)

and the desired function I(r) is the corresponding eigenfunction. To

calculate U and find the eigenfunction I as we did in the text

requires that we find an expansion of the kernel H(rr') analogous
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to (7). For these purposes the expression of H(r,r') via (III.6) is

not particularly useful so we return to (111.5) and note that

J0 (kr)J0 (kr') = J0 (kR)d (II1.8)

2 2 2
where R = r + r' - 2rr'cos. But

K  K

kdk J0 (kR) = J1(KR) (III.9)

= 2 (n+ 1) n+(Kr) Jn+(Kr') sin(n+l),(III.10)

r r/ sin*
n=O

(cf. Gradshteya and Ryzkik 1965a,b). From (III.8)-(III.10), (III.5)

becomes

S2n+J (Kr) J 2n+ (K r ' )

H(r,r') = 2 (2n+l) (III.11)

n=0

Proceeding in a manner similar to that presented in the text, we then

find from (111.7) and (III.11) that T(r) can be written as

1 

OD

I(r) = WE an (Kr) (111.12)

n=O

where

ln(r) = 2(2nli) J2n+l(Kr)

and the column matrix an satisfies the eigenvalue equation
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an = Anm(KL)am (III.13)

n=O

with

KL KL
Anm(KL) = (x)(x) = (2n (21) - J 2  (xJ 2m(

0 f0

From here on a method analogous to that employed in the one-dimensional

case can be used to evaluate the entries in the matrix A and to
nm

solve the truncated form of the matrix equation (111.13) for the largest

eigenvalue and corresponding eigenvector a . From (111.12), then,n

our desired function f(r) is given by

1 1 0 2\ J2n+ (Kr)
f(r) = \r (r) = r an n(Kr) 2

=  2 a n  r
n=O n=O

B. Three Dimensions

Again in this case, the function f(r), vanishing for r > L, has

a three-dimensional transform, which is a function of [I'k (- k) only,

given by

kf (k) (213/2 r2dr f (r) 2 d f e-L rdr sin kr f(r)

-1 0 (III.14)

The inverse transform is

rf(r) = 2 kdk sinkrf(k) (III.15)
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From (III.14) and (III.15) we see that

SL 2(r)dr = 2(k)dk = N

where I(r) = rf(r) and (k) = kf(k).

The quantity to be maximized is

1 K
S= N 2 (k)dk . (III.16)

Again setting N = 1 as the normalization constraint and using (III.14)

in (III.16) we find

L L
=f dr dr' '(r)H(rr')r(r') , (III.17)

0 0

where

2H(rr dk sin kr sin 1 sinK(r-r') 1 sinK(rr' )  (III.18)

40 ' r-r' r(r'

The extremal condition for 0 with the normalization constraint is

then the homogeneous integral equation

L

aCI(r) = H(rr')T(r')dr' ,

or, from (III.18),

L sinK(r-r') 0 sinK(r-r')af(r) = dr' F(r') - - dr' (-r'). (III.19
r-r r-r'
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Thus if we define I(r) for r < 0 according to

'(r) = -r(-r) , (111.20)

we see that I(r) must satisfy

Ca'(r) = dr sinK(r-r) ) (III.21)

-L

We note that (111.21) is exactly the same equation as that for the

one-dimensional case (I.5). However we have the added restriction,

(111.20), that F(r) be odd. Thus the solution in this case is the

same for the one-dimensional case, except that we must find the largest

eigenvalue corresponding to an odd eigenfunction r(r). The solution

for f(r) which has the largest fraction of its power spectrum confined

to a sphere of radius K in k-space is then given by

f(r) = I T(r)

The largest value of C as a function of KL for three dimensions is

plotted in figure 1 as the curve corresponding to the best odd function.
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APPENDIX IV

We have from equation (6) the Fourier transform of an eigenfunction

f(k) = i an (IV.1)

±i n=0 (4n+ 3)2j 2n+l(KLk)

where the upper quantities in curly brackets refer to even eigenfunctions,

the lower quantities to odd eigenfunctions. We have the general form

for the Fourier transform of a spherical Bessel function from Abramowitz

and Stegun (196 4c)

n (k) = ( ) P n (k) (Iv.2)

where P (k) is the Legendre polynomial of order n. When we take the

inverse Fourier transform of both sides of (IV.1) we find

O n 4 2n KL)
f(x) =ai- (-1)" n (IV.3)

n=O n

We see that the value of the first neglected term gives an upper bound

on the error in truncating (IV.3).
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FIGURE CAPTIONS

Figure i. Fraction of spectral power confined (a) and logl0 (1-a) as

a function of KL. Curve 1 is the fraction of spectral

power contained in [-K,K] for the best even eigenfunction on

[-L,L] as a function of KL. Curve 2 is the same quantity

for the best odd eigenfunction. Curve 3 is the logarithm of

(1-a), the fraction of the spectral power outside [-K,K],

for the best even eigenfunction on [-L,L] as a function of KL.

Curve 4 is the same quantity for the best odd eigenfunction.

Figure 2. Eigenfunctions associated with the largest eigenvalue for

various values of KL. The eigenfunctions associated with

the largest eigenvalue plotted for KL varying from r/2

(uppermost curve) to 4 (lowest curve) in increments of

n/2. As the functions are in these cases symmetric, they are

plotted only for x > 0. The ordinate is arbitrary with all

functions normalized to have the same value at x = 0.
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